Президентская программа
исследовательских проектов

Физики вырастили полупроводниковые пленки на «податливых» подложках

Фото взято из открытых источников

Ученые Уральского федерального университета и Воронежского государственного университета при поддержке Российского научного фонда придумали способ, как вырастить низкодефектные пленки полупроводников группы GaAs на кремниевых подложках. Применяя этот способ к разным материалам, в будущем можно будет создавать новые эффективные элементы для солнечных батарей, светодиодов и компьютеров. Результаты исследования опубликованы в Applied Surface Science.

Идея соединить в одном приборе важнейшие для современной электроники полупроводники — кремний Si и арсенид галлия GaAs — давно возникла в физике наногетероструктур. Свойства арсенида галлия позволяют применять его в мощных полупроводниковых лазерах и других оптоэлектронных приборах. Кроме того, этот материал устойчив к радиации, а значит, может использоваться и в космосе. Однако арсенид галлия уступает кремнию по ряду характеристик. Совмещение соединений элементов третьей и пятой групп Периодической таблицы (обобщенно их называют AIIIBV-соединения), таких как полупроводники группы GaAs, с кремниевыми подложками — уникальный шанс объединить преимущества передовых полупроводниковых материалов с возможностями кремниевой технологии.

До сих пор известные способы выращивания пленок арсенида галлия на кремниевой подложке не срабатывали из-за разницы в параметрах кристаллических решеток материалов — размеры элементарных ячеек у них значительно отличаются, что приводит к формированию дефектов. Не меньшую проблему представляет разница в коэффициентах температурного расширения материалов: даже если осаждение молекул арсенида галлия на кремниевую подложку проходит успешно, остывают слои по-разному, и образуются трещины.

Справиться с этим, как показали ранее исследования физиков УрФУ и ВГУ, в некоторых случаях помогает дополнительный слой кремния — но не обычного, а пористого. Подложку с таким дополнительным слоем называют «податливой», так как пористый кремний подстраивается под кристаллическую решетку следующего слоя, и число дефектов сокращается. Но этот метод тоже не идеален — использование макро- и мезопористого кремния не всегда спасает. В новом исследовании ученые пошли дальше и объединили в структуру податливой подложки пористый кремний и сверхструктурный слой на основе AIIIBV. Сверхструктурный слой, или дополнительный уровень организации материала, образован за счет слоевого упорядочения атомов в элементарной ячейке.

Новая технология роста интегрированных гетероструктур включает обработку кремниевой подложки, формирование слоя пористого кремния и последующее осаждение на него тонких слоев полупроводников из газообразной фазы. Исследования полученных гетероструктур GaAs/Si несколькими структурно-спектроскопическими методами показали, что введение в состав податливой подложки сверхструктурного слоя нивелирует ряд негативных эффектов эпитаксиального роста (направленного роста одного кристалла на поверхности другого). В пленках образуется меньше дефектов, чем при традиционной технологии. Кроме того, новый способ позволяет сократить число технологических операций по росту переходных буферных слоев.

«Мы считаем, что использование сверхструктурного слоя — ключевой фактор в более эффективном перераспределении напряжений в гетероструктурах, — отмечает ведущий научный сотрудник Научно-образовательного центра „Наноматериалы и нанотехнологии“ УрФУ, заведующий кафедрой физики твердого тела и наноструктур физического факультета Воронежского государственного университета Павел Середин. — Конечно же, здесь еще очень много работы. Но мы полагаем, что использование податливых подложек, в которые введены такие дополнительные слои, позволит улучшить структурные и морфологические свойства эпитаксиальной пленки, а также добиться ее хороших оптических характеристик. Еще одна интересная идея в этой области, которую мы хотели бы реализовать, — использование податливых подложек для объединения AIIIBV-полупроводниковых систем в одномерной форме с кремниевой схемой обработки сигналов. Вместе с коллегами из РАН мы подготовили заявку на один из конкурсов Президентской программы грантов РНФ и надеемся осуществить давнюю мечту оптического сообщества».

Возврат к списку